This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub rainbou-kpr/library
#include "cpp/graph.hpp"
#pragma once #include <iostream> #include <limits> #include <queue> #include <vector> /** * @brief グラフの汎用クラス * * @tparam Cost 辺のコストの型 */ template <typename Cost=int> struct Graph { /** * @brief 有向辺の構造体 * * operator int()を定義しているので、int型にキャストすると勝手にdstになる * 例えば、 * for (auto& e : g[v]) をすると、vから出る辺が列挙されるが、 * for (int dst : g[v]) とすると、vから出る辺の行き先が列挙される */ struct Edge { int src; //!< 始点 int dst; //!< 終点 Cost cost; //!< コスト int id; //!< 辺の番号(追加された順、無向辺の場合はidが同じで方向が逆のものが2つ存在する) Edge() = default; Edge(int src, int dst, Cost cost=1, int id=-1) : src(src), dst(dst), cost(cost), id(id) {} operator int() const { return dst; } }; int n; //!< 頂点数 int m; //!< 辺数 std::vector<std::vector<Edge>> g; //!< グラフの隣接リスト表現 /** * @brief デフォルトコンストラクタ */ Graph() : n(0), m(0), g(0) {} /** * @brief コンストラクタ * @param n 頂点数 */ explicit Graph(int n) : n(n), m(0), g(n) {} /** * @brief 無向辺を追加する * @param u 始点 * @param v 終点 * @param w コスト 省略したら1 */ void add_edge(int u, int v, Cost w=1) { g[u].push_back({u, v, w, m}); g[v].push_back({v, u, w, m++}); } /** * @brief 有向辺を追加する * @param u 始点 * @param v 終点 * @param w コスト 省略したら1 */ void add_directed_edge(int u, int v, Cost w=1) { g[u].push_back({u, v, w, m++}); } /** * @brief 辺の情報を標準入力から受け取って追加する * @param m 辺の数 * @param padding 頂点番号を入力からいくつずらすか 省略したら-1 * @param weighted 辺の重みが入力されるか 省略したらfalseとなり、重み1で辺が追加される * @param directed 有向グラフかどうか 省略したらfalse */ void read(int m, int padding=-1, bool weighted=false, bool directed=false) { for(int i = 0; i < m; i++) { int u, v; std::cin >> u >> v; u += padding, v += padding; Cost c(1); if(weighted) std::cin >> c; if(directed) add_directed_edge(u, v, c); else add_edge(u, v, c); } } /** * @brief ある頂点から出る辺を列挙する * @param v 頂点番号 * @return std::vector<Edge>& vから出る辺のリスト */ std::vector<Edge>& operator[](int v) { return g[v]; } /** * @brief ある頂点から出る辺を列挙する * @param v 頂点番号 * @return const std::vector<Edge>& vから出る辺のリスト */ const std::vector<Edge>& operator[](int v) const { return g[v]; } /** * @brief 辺のリスト * @return std::vector<Edge> 辺のリスト(idの昇順) * * 無向辺は代表して1つだけ格納される */ std::vector<Edge> edges() const { std::vector<Edge> res(m); for(int i = 0; i < n; i++) { for(auto& e : g[i]) { res[e.id] = e; } } return res; } /** * @brief ある頂点から各頂点への最短路 * * @param s 始点 * @param weighted 1以外のコストの辺が存在するか 省略するとtrue * @param inf コストのminの単位元 未到達の頂点への距離はinfになる 省略すると-1 * @return std::pair<std::vector<Cost>, std::vector<Edge>> first:各頂点への最短路長 second:各頂点への最短路上の直前の辺 */ std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path(int s, bool weignted = true, Cost inf = -1) const { if(weignted) return shortest_path_dijkstra(s, inf); return shortest_path_bfs(s, inf); } std::vector<int> topological_sort() { std::vector<int> indeg(n), sorted; std::queue<int> q; for (int i = 0; i < n; i++) { for (int dst : g[i]) indeg[dst]++; } for (int i = 0; i < n; i++) { if (!indeg[i]) q.push(i); } while (!q.empty()) { int cur = q.front(); q.pop(); for (int dst : g[cur]) { if (!--indeg[dst]) q.push(dst); } sorted.push_back(cur); } return sorted; } private: std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path_bfs(int s, Cost inf) const { std::vector<Cost> dist(n, inf); std::vector<Edge> prev(n); std::queue<int> que; dist[s] = 0; que.push(s); while(!que.empty()) { int u = que.front(); que.pop(); for(auto& e : g[u]) { if(dist[e.dst] == inf) { dist[e.dst] = dist[e.src] + 1; prev[e.dst] = e; que.push(e.dst); } } } return {dist, prev}; } std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path_dijkstra(int s, Cost inf) const { std::vector<Cost> dist(n, inf); std::vector<Edge> prev(n); using Node = std::pair<Cost, int>; std::priority_queue<Node, std::vector<Node>, std::greater<Node>> que; dist[s] = 0; que.push({0, s}); while(!que.empty()) { auto [d, u] = que.top(); que.pop(); if(d > dist[u]) continue; for(auto& e : g[u]) { if(dist[e.dst] == inf || dist[e.dst] > dist[e.src] + e.cost) { dist[e.dst] = dist[e.src] + e.cost; prev[e.dst] = e; que.push({dist[e.dst], e.dst}); } } } return {dist, prev}; } };
#line 2 "cpp/graph.hpp" #include <iostream> #include <limits> #include <queue> #include <vector> /** * @brief グラフの汎用クラス * * @tparam Cost 辺のコストの型 */ template <typename Cost=int> struct Graph { /** * @brief 有向辺の構造体 * * operator int()を定義しているので、int型にキャストすると勝手にdstになる * 例えば、 * for (auto& e : g[v]) をすると、vから出る辺が列挙されるが、 * for (int dst : g[v]) とすると、vから出る辺の行き先が列挙される */ struct Edge { int src; //!< 始点 int dst; //!< 終点 Cost cost; //!< コスト int id; //!< 辺の番号(追加された順、無向辺の場合はidが同じで方向が逆のものが2つ存在する) Edge() = default; Edge(int src, int dst, Cost cost=1, int id=-1) : src(src), dst(dst), cost(cost), id(id) {} operator int() const { return dst; } }; int n; //!< 頂点数 int m; //!< 辺数 std::vector<std::vector<Edge>> g; //!< グラフの隣接リスト表現 /** * @brief デフォルトコンストラクタ */ Graph() : n(0), m(0), g(0) {} /** * @brief コンストラクタ * @param n 頂点数 */ explicit Graph(int n) : n(n), m(0), g(n) {} /** * @brief 無向辺を追加する * @param u 始点 * @param v 終点 * @param w コスト 省略したら1 */ void add_edge(int u, int v, Cost w=1) { g[u].push_back({u, v, w, m}); g[v].push_back({v, u, w, m++}); } /** * @brief 有向辺を追加する * @param u 始点 * @param v 終点 * @param w コスト 省略したら1 */ void add_directed_edge(int u, int v, Cost w=1) { g[u].push_back({u, v, w, m++}); } /** * @brief 辺の情報を標準入力から受け取って追加する * @param m 辺の数 * @param padding 頂点番号を入力からいくつずらすか 省略したら-1 * @param weighted 辺の重みが入力されるか 省略したらfalseとなり、重み1で辺が追加される * @param directed 有向グラフかどうか 省略したらfalse */ void read(int m, int padding=-1, bool weighted=false, bool directed=false) { for(int i = 0; i < m; i++) { int u, v; std::cin >> u >> v; u += padding, v += padding; Cost c(1); if(weighted) std::cin >> c; if(directed) add_directed_edge(u, v, c); else add_edge(u, v, c); } } /** * @brief ある頂点から出る辺を列挙する * @param v 頂点番号 * @return std::vector<Edge>& vから出る辺のリスト */ std::vector<Edge>& operator[](int v) { return g[v]; } /** * @brief ある頂点から出る辺を列挙する * @param v 頂点番号 * @return const std::vector<Edge>& vから出る辺のリスト */ const std::vector<Edge>& operator[](int v) const { return g[v]; } /** * @brief 辺のリスト * @return std::vector<Edge> 辺のリスト(idの昇順) * * 無向辺は代表して1つだけ格納される */ std::vector<Edge> edges() const { std::vector<Edge> res(m); for(int i = 0; i < n; i++) { for(auto& e : g[i]) { res[e.id] = e; } } return res; } /** * @brief ある頂点から各頂点への最短路 * * @param s 始点 * @param weighted 1以外のコストの辺が存在するか 省略するとtrue * @param inf コストのminの単位元 未到達の頂点への距離はinfになる 省略すると-1 * @return std::pair<std::vector<Cost>, std::vector<Edge>> first:各頂点への最短路長 second:各頂点への最短路上の直前の辺 */ std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path(int s, bool weignted = true, Cost inf = -1) const { if(weignted) return shortest_path_dijkstra(s, inf); return shortest_path_bfs(s, inf); } std::vector<int> topological_sort() { std::vector<int> indeg(n), sorted; std::queue<int> q; for (int i = 0; i < n; i++) { for (int dst : g[i]) indeg[dst]++; } for (int i = 0; i < n; i++) { if (!indeg[i]) q.push(i); } while (!q.empty()) { int cur = q.front(); q.pop(); for (int dst : g[cur]) { if (!--indeg[dst]) q.push(dst); } sorted.push_back(cur); } return sorted; } private: std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path_bfs(int s, Cost inf) const { std::vector<Cost> dist(n, inf); std::vector<Edge> prev(n); std::queue<int> que; dist[s] = 0; que.push(s); while(!que.empty()) { int u = que.front(); que.pop(); for(auto& e : g[u]) { if(dist[e.dst] == inf) { dist[e.dst] = dist[e.src] + 1; prev[e.dst] = e; que.push(e.dst); } } } return {dist, prev}; } std::pair<std::vector<Cost>, std::vector<Edge>> shortest_path_dijkstra(int s, Cost inf) const { std::vector<Cost> dist(n, inf); std::vector<Edge> prev(n); using Node = std::pair<Cost, int>; std::priority_queue<Node, std::vector<Node>, std::greater<Node>> que; dist[s] = 0; que.push({0, s}); while(!que.empty()) { auto [d, u] = que.top(); que.pop(); if(d > dist[u]) continue; for(auto& e : g[u]) { if(dist[e.dst] == inf || dist[e.dst] > dist[e.src] + e.cost) { dist[e.dst] = dist[e.src] + e.cost; prev[e.dst] = e; que.push({dist[e.dst], e.dst}); } } } return {dist, prev}; } };