This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub rainbou-kpr/library
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/JAG/Summer/2971" #include <array> #include <iostream> #include "../cpp/modint.hpp" #include "../cpp/potentialized-unionfind.hpp" template <typename mint> bool solve(int n, const std::vector<std::array<int, 3>>& abx) { UnionFindMul<mint> uf(n); for (auto [a, b, x] : abx) { mint mx = x; if (mx != 0) { if (uf.same(a, b)) { if (uf.diff(a, b) != mx) { return false; } } else { uf.merge(a, b, mx); } } } return true; } int main() { using mint3 = modint998244353; using mint7 = modint1000000007; using mint9 = static_modint<1000000009U>; int n, m; std::cin >> n >> m; std::vector<std::array<int, 3>> abx(m); for (auto& [a, b, x] : abx) { std::cin >> a >> b >> x; a--; b--; } if (solve<mint3>(n, abx) && solve<mint7>(n, abx) && solve<mint9>(n, abx)) { std::cout << "Yes" << std::endl; } else { std::cout << "No" << std::endl; } }
#line 1 "test/aoj-jag-summer-2971.test.cpp" #define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/JAG/Summer/2971" #include <array> #include <iostream> #line 2 "cpp/modint.hpp" /** * @file modint.hpp * @brief 四則演算において自動で mod を取るクラス */ #line 9 "cpp/modint.hpp" #include <utility> #include <limits> #include <type_traits> #include <cstdint> #include <cassert> namespace detail { static constexpr std::uint16_t prime32_bases[] { 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560, 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028, 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113, 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206, 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17, 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903, 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41, 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315, 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263, 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524, 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031, 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336, 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788, 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183, 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522, 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785, 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42, 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816, 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708, 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194, }; static constexpr bool is_SPRP(std::uint32_t n, std::uint32_t a) noexcept { std::uint32_t d = n - 1; std::uint32_t s = 0; while ((d & 1) == 0) { ++s; d >>= 1; } std::uint64_t cur = 1; std::uint64_t pw = d; while (pw) { if (pw & 1) cur = (cur * a) % n; a = (static_cast<std::uint64_t>(a) * a) % n; pw >>= 1; } if (cur == 1) return true; for (std::uint32_t r = 0; r < s; ++r) { if (cur == n - 1) return true; cur = (cur * cur) % n; } return false; } // 32ビット符号なし整数の素数判定 // 参考: M. Forisek and J. Jancina, “Fast Primality Testing for Integers That Fit into a Machine Word,” presented at the Conference on Current Trends in Theory and Practice of Informatics, 2015. [[nodiscard]] static constexpr bool is_prime32(std::uint32_t x) noexcept { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); std::uint64_t h = x; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) & 0xff; return is_SPRP(x, prime32_bases[h]); } } /// @brief static_modint と dynamic_modint の実装を CRTP によって行うためのクラステンプレート /// @tparam Modint このクラステンプレートを継承するクラス template <class Modint> class modint_base { public: /// @brief 保持する値の型 using value_type = std::uint32_t; /// @brief 0 で初期化します。 constexpr modint_base() noexcept : m_value{ 0 } {} /// @brief @c value の剰余で初期化します。 /// @param value 初期化に使う値 template <class SignedIntegral, std::enable_if_t<std::is_integral_v<SignedIntegral> && std::is_signed_v<SignedIntegral>>* = nullptr> constexpr modint_base(SignedIntegral value) noexcept : m_value{ static_cast<value_type>((static_cast<long long>(value) % Modint::mod() + Modint::mod()) % Modint::mod()) } {} /// @brief @c value の剰余で初期化します。 /// @param value 初期化に使う値 template <class UnsignedIntegral, std::enable_if_t<std::is_integral_v<UnsignedIntegral> && std::is_unsigned_v<UnsignedIntegral>>* = nullptr> constexpr modint_base(UnsignedIntegral value) noexcept : m_value{ static_cast<value_type>(value % Modint::mod()) } {} /// @brief 保持している値を取得します。 /// @return 保持している値 [[nodiscard]] constexpr value_type value() const noexcept { return m_value; } /// @brief 保持している値をインクリメントして、剰余を取ります。 /// @return @c *this constexpr Modint& operator++() noexcept { ++m_value; if (m_value == Modint::mod()) { m_value = 0; } return static_cast<Modint&>(*this); } /// @brief 保持している値をインクリメントして、剰余を取ります。 /// @return @c *this constexpr Modint operator++(int) noexcept { auto x = static_cast<const Modint&>(*this); ++*this; return x; } /// @brief 保持している値をデクリメントして、剰余を取ります。 /// @return @c *this constexpr Modint& operator--() noexcept { if (m_value == 0) { m_value = Modint::mod(); } --m_value; return static_cast<Modint&>(*this); } /// @brief 保持している値をデクリメントして、剰余を取ります。 /// @return @c *this constexpr Modint operator--(int) noexcept { auto x = static_cast<const Modint&>(*this); --*this; return x; } /// @brief 保持している値に @c x の持つ値を足して、剰余を取ります。 /// @param x 足す数 /// @return @c *this constexpr Modint& operator+=(const Modint& x) noexcept { m_value += x.m_value; if (m_value >= Modint::mod()) { m_value -= Modint::mod(); } return static_cast<Modint&>(*this); } /// @brief 保持している値から @c x の持つ値を引いて、剰余を取ります。 /// @param x 引く数 /// @return @c *this constexpr Modint& operator-=(const Modint& x) noexcept { m_value -= x.m_value; if (m_value >= Modint::mod()) { m_value += Modint::mod(); } return static_cast<Modint&>(*this); } /// @brief 保持している値に @c x の持つ値を掛けて、剰余を取ります。 /// @param x 掛ける数 /// @return @c *this constexpr Modint& operator*=(const Modint& x) noexcept { m_value = static_cast<value_type>(static_cast<std::uint64_t>(m_value) * x.m_value % Modint::mod()); return static_cast<Modint&>(*this); } /// @brief 保持している値を @c x の持つ値で割って、剰余を取ります。 /// @remark 時間計算量: @f$O(\log x)@f$ /// @param x 割る数 /// @return @c *this constexpr Modint& operator/=(const Modint& x) noexcept { return *this *= x.inv(); } /// @brief 自身のコピーを返します。 /// @return @c *this [[nodiscard]] constexpr Modint operator+() const noexcept { return static_cast<const Modint&>(*this); } /// @brief 自身の反数を返します。 /// @return 自身の反数 [[nodiscard]] constexpr Modint operator-() const noexcept { return 0 - static_cast<const Modint&>(*this); } /// @brief 自身の @c n 乗を返します。 /// @remark 時間計算量: @f$O(\log n)@f$ /// @param n 指数 /// @return 自身の @c n 乗 [[nodiscard]] constexpr Modint pow(unsigned long long n) const noexcept { Modint x = 1; Modint y = static_cast<const Modint&>(*this); while (n) { if (n & 1) { x *= y; } y *= y; n >>= 1; } return x; } /// @brief 自身の逆数を返します。 /// @remark 時間計算量: @f$O(\log value)@f$ /// @return 自身の逆数 [[nodiscard]] constexpr Modint inv() const noexcept { long long a = Modint::mod(); long long b = m_value; long long x = 0; long long y = 1; while (b) { auto t = a / b; auto u = a - t * b; a = b; b = u; u = x - t * y; x = y; y = u; } assert(a == 1 && "The inverse element does not exist."); x %= Modint::mod(); if (x < 0) { x += Modint::mod(); } return x; } /// @brief @c x に @c y を足したオブジェクトを返します。 /// @param x 足される数 /// @param y 足す数 /// @return @c x に @c y を足したオブジェクト [[nodiscard]] friend constexpr Modint operator+(const Modint& x, const Modint& y) noexcept { return std::move(Modint{ x } += y); } /// @brief @c x から @c y を引いたオブジェクトを返します。 /// @param x 引かれる数 /// @param y 引く数 /// @return @c x から @c y を引いたオブジェクト [[nodiscard]] friend constexpr Modint operator-(const Modint& x, const Modint& y) noexcept { return std::move(Modint{ x } -= y); } /// @brief @c x に @c y を掛けたオブジェクトを返します。 /// @param x 掛けられる数 /// @param y 掛ける数 /// @return @c x に @c y を掛けたオブジェクト [[nodiscard]] friend constexpr Modint operator*(const Modint& x, const Modint& y) noexcept { return std::move(Modint{ x } *= y); } /// @brief @c x を @c y で割ったオブジェクトを返します。 /// @param x 割られる数 /// @param y 割る数 /// @return @c x を @c y で割ったオブジェクト [[nodiscard]] friend constexpr Modint operator/(const Modint& x, const Modint& y) noexcept { return std::move(Modint{ x } /= y); } /// @brief @c x と @c y の保持する値が等しいかどうかを調べます。 /// @return @c x と @c y の保持する値が等しければ @c true 、そうでなければ @c false [[nodiscard]] friend constexpr bool operator==(const Modint& x, const Modint& y) noexcept { return x.m_value == y.m_value; } /// @brief @c x と @c y の保持する値が等しくないかどうかを調べます。 /// @return @c x と @c y の保持する値が等しければ @c false 、そうでなければ @c true [[nodiscard]] friend constexpr bool operator!=(const Modint& x, const Modint& y) noexcept { return not (x == y); } /// @brief 入力ストリームから符号付き整数を読み取り、 @c x に格納します。 /// @tparam CharT 入力ストリームの文字型 /// @tparam Traits 入力ストリームの文字トレイト /// @param is 入力ストリーム /// @param x 入力を受け取るオブジェクト /// @return @c is template <class CharT, class Traits> friend std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& is, Modint& x) { long long tmp; is >> tmp; x = tmp; return is; } /// @brief 出力ストリームに @c x の保持する値を出力します。 /// @tparam CharT 出力ストリームの文字型 /// @tparam Traits 出力ストリームの文字トレイト /// @param os 出力ストリーム /// @param x 出力するオブジェクト /// @return @c os template <class CharT, class Traits> friend std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const Modint& x) { os << x.value(); return os; } protected: value_type m_value; }; /// @brief コンパイル時に法が決まるとき、四則演算において自動で mod を取るクラス /// @tparam Mod 法 template <std::uint32_t Mod> class static_modint : public modint_base<static_modint<Mod>> { static_assert(Mod > 0 && Mod <= std::numeric_limits<std::uint32_t>::max() / 2); private: using base_type = modint_base<static_modint<Mod>>; public: using typename base_type::value_type; /// @brief 法を取得します。 /// @return 法 [[nodiscard]] static constexpr value_type mod() noexcept { return Mod; } /// @brief 0 で初期化します。 constexpr static_modint() noexcept : base_type{} {} /// @brief @c value の剰余で初期化します。 /// @param value 初期化に使う値 template <class SignedIntegral, std::enable_if_t<std::is_integral_v<SignedIntegral>>* = nullptr> constexpr static_modint(SignedIntegral value) noexcept : base_type{value} {} /// @brief 自身の逆数を返します。 /// @remark 時間計算量: @f$O(\log value)@f$ /// @return 自身の逆数 [[nodiscard]] constexpr static_modint inv() const noexcept { if constexpr (detail::is_prime32(Mod)) { assert(this->m_value != 0 && "The inverse element of zero does not exist."); return this->pow(Mod - 2); } else { return base_type::inv(); } } }; /// @brief 実行時に法が決まるとき、四則演算において自動で mod を取るクラス /// @tparam ID このIDごとに法を設定することができます template <int ID> class dynamic_modint : public modint_base<dynamic_modint<ID>> { private: using base_type = modint_base<dynamic_modint<ID>>; public: using typename base_type::value_type; /// @brief 法を取得します。 /// @return 法 [[nodiscard]] static value_type mod() noexcept { return modulus; } /// @brief 法を設定します。 /// @param m 新しい法 static void set_mod(value_type m) noexcept { assert(m > 0 && m <= std::numeric_limits<value_type>::max() / 2); modulus = m; } /// @brief 0 で初期化します。 constexpr dynamic_modint() noexcept : base_type{} {} /// @brief @c value の剰余で初期化します。 /// @param value 初期化に使う値 template <class SignedIntegral, std::enable_if_t<std::is_integral_v<SignedIntegral>>* = nullptr> constexpr dynamic_modint(SignedIntegral value) noexcept : base_type{value} {} private: inline static value_type modulus = 998244353; }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; #line 2 "cpp/potentialized-unionfind.hpp" /** * @file potentialized-unionfind.hpp * @brief ポテンシャル付きUnionFind */ #line 8 "cpp/potentialized-unionfind.hpp" #include <functional> #include <stack> #line 11 "cpp/potentialized-unionfind.hpp" #include <vector> #line 2 "cpp/more_functional.hpp" /** * @file more_functional.hpp * @brief 関数オブジェクトを定義する */ #line 9 "cpp/more_functional.hpp" #include <numeric> #line 11 "cpp/more_functional.hpp" namespace more_functional { template <typename S> struct Max { const S operator()(const S& a, const S& b) const { return std::max(a, b); } }; template <typename S> struct Min { const S operator()(const S& a, const S& b) const { return std::min(a, b); } }; template <typename S, std::enable_if_t<std::is_integral_v<S>>* = nullptr> struct Gcd { constexpr S operator()(const S& a, const S& b) const { return std::gcd(a, b); } }; template <typename S> struct Zero { S operator()() const { return S(0); } }; template <typename S> struct One { S operator()() const { return S(1); } }; template <typename S> struct None { S operator()() const { return S{}; } }; template <typename S, std::enable_if_t<std::is_scalar_v<S>>* = nullptr> struct MaxLimit { constexpr S operator()() const { return std::numeric_limits<S>::max(); } }; template <typename S, std::enable_if_t<std::is_scalar_v<S>>* = nullptr> struct MinLimit { constexpr S operator()() const { return std::numeric_limits<S>::lowest(); } }; template <typename S> struct Div { S operator()(const S& a) const { return S(1) / a; } }; } // namespace more_functional #line 13 "cpp/potentialized-unionfind.hpp" /** * @brief ポテンシャル付きUnionFind * @tparam S ポテンシャルの型 * @tparam Op Sの積のファンクタ * @tparam E Sの単位元を返すファンクタ * @tparam Inv Sの逆元を返すファンクタ */ template <typename S, class Op, class E, class Inv> class PotentializedUnionFind { private: int _n; // 負ならサイズ、非負なら親 std::vector<int> parent_or_size; // 重み std::vector<S> diff_weight; inline constexpr static auto op = Op(); inline constexpr static auto e = E(); inline constexpr static auto inv = Inv(); public: PotentializedUnionFind() : _n{}, parent_or_size{}, diff_weight{} {} /** * @param n 要素数 */ explicit PotentializedUnionFind(int n) : _n(n), parent_or_size(n, -1), diff_weight(n, e()) {} /** * @brief 頂点aの属する連結成分の代表元 */ int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; std::stack<int> stk; stk.push(a); while (parent_or_size[stk.top()] >= 0) { stk.push(parent_or_size[stk.top()]); } const int root = stk.top(); stk.pop(); stk.pop(); while (!stk.empty()) { diff_weight[stk.top()] = op(diff_weight[parent_or_size[stk.top()]], diff_weight[stk.top()]); parent_or_size[stk.top()] = root; stk.pop(); } return root; } /** * @brief a のグループと b のグループを統合する * @param w (b のポテンシャル) - (a のポテンシャル) * @return 連結したものの代表元 */ int merge(int a, int b, S w) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); w = op(weight(a), w); w = op(w, inv(weight(b))); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) { std::swap(x, y); w = inv(w); } parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; diff_weight[y] = w; return x; } /** * @brief 頂点a,bが連結かどうか */ bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } /** * @brief (b のポテンシャル) - (a のポテンシャル) * @remark デフォルトコンストラクタで作られる S について Inv が定義されているならば、a == b を許容 */ S diff(int a, int b) { assert(same(a, b)); return op(inv(weight(a)), weight(b)); } /** * @brief 頂点aの属する連結成分のサイズ */ int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } /** * @brief グラフを連結成分に分け、その情報を返す * @return 「一つの連結成分の頂点番号のリスト」のリスト */ std::vector<std::vector<int>> groups() { std::vector<int> leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector<std::vector<int>> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase(std::remove_if(result.begin(), result.end(), [&](const std::vector<int>& v) { return v.empty(); }), result.end()); return result; } private: S weight(int a) { leader(a); return diff_weight[a]; } }; /** * @tparam S 群の型 */ template <typename S> using UnionFindPlus = PotentializedUnionFind<S, std::plus<S>, more_functional::None<S>, std::negate<S>>; /** * @tparam S 群の型 */ template <typename S> using UnionFindMul = PotentializedUnionFind<S, std::multiplies<S>, more_functional::One<S>, more_functional::Div<S>>; #line 8 "test/aoj-jag-summer-2971.test.cpp" template <typename mint> bool solve(int n, const std::vector<std::array<int, 3>>& abx) { UnionFindMul<mint> uf(n); for (auto [a, b, x] : abx) { mint mx = x; if (mx != 0) { if (uf.same(a, b)) { if (uf.diff(a, b) != mx) { return false; } } else { uf.merge(a, b, mx); } } } return true; } int main() { using mint3 = modint998244353; using mint7 = modint1000000007; using mint9 = static_modint<1000000009U>; int n, m; std::cin >> n >> m; std::vector<std::array<int, 3>> abx(m); for (auto& [a, b, x] : abx) { std::cin >> a >> b >> x; a--; b--; } if (solve<mint3>(n, abx) && solve<mint7>(n, abx) && solve<mint9>(n, abx)) { std::cout << "Yes" << std::endl; } else { std::cout << "No" << std::endl; } }